在前几期的直播中,我们为大家介绍了监控和日志相关的一些内容。监控分为三个阶段,基础监控、应用监控、业务监控。前面我们已经分享了基础监控的部分,今天主要为大家带来用户体验优化的一些分享。
用户体验,是指用户在使用产品或服务过程中的一种主观感受。最近几十年,由于计算机技术的迅猛发展,人们的生活方式也发生了翻天覆地的变化。而用户体验在这一演变过程中,也引起了大众的愈发关注和重视,许多国内外企业还专门为此建立了用户体验度量模型。
面向B端和C端用户的产品,用户体验都是十分重要的环节,但针对不同人群,用户体验也有着不同的侧重点。C端用户的体验偏主观,体验不好的用户会选择直接卸载产品或者转而使用竞品;而B端用户更关注如何提高生产、管理效率、节约成本等。换言之,C端的价值中心是用户,留住用户就等于获取收益;B端的价值中心是产品,把产品做好可以节约更多的成本。
我们可以围绕用户和产品两种价值中心去驱动建设用户体验价值分析系统,从而改善业务稳定性,用数据驱动业务增长,提升客户满意度。
01. 用户体验度量面临的挑战
用户体验的重要性日益凸显,各产品、运营人员更是以用户访问量、留存率等作为自己的考核指标,对应用的观测也从原本的主要关注后端资源变为前后端协同关联的形式,在这种变化下,UEM(user experience management)用户体验管理技术应运而生,用于保证用户体验。
然而随着用户端的多样性及数量的上升,用户体验的度量也面临诸多挑战:
- 信息感知慢:运维人员无法及时感知用户侧的不良体验详细情况,解决用户不良体验问题的速度较为滞后。
- 终端种类繁:用户接入终端类型繁多,WEB/APP/小程序层出不穷,更不用说各自版本碎片化问题,用户自行构建信息感知体系难度更高。
- 异常定位难:在前后端分离的环境下,异常边界的划分、修复责任人的归属容易引起矛盾,且多个打包堆栈的情况下不易定位异常。
- 量化标准缺:前端与后端不同,业界尚未有完整的最佳实践解决方案(如后端的OT)用于标准量化用户体验,评估产品性能。
- 运营数据杂:用户通过传统手段获取的运营数据量多且杂,缺少统一管理的工具,自行建立运营指标评估体系也需要一定的技术门槛。
- 工具联动弱:企业自行建立的前端监控系统大多由运维独自奋战,能够使用的辅助工具有限,额外开发意味着额外人力,降低效率。
多种挑战结合在一起,导致前端体验变差,用户体验不佳,将带来严重的用户流失问题。
02. 用户体验分析体系的五个步骤
要提升用户体验,首先我们需要对用户体验进行分析,有了分析结果才能找到切入点进行优化,可以考虑从以下两大目标、五个步骤去进行用户体验分析,随着业务参与度的提高,分析难度也会逐渐增大。
① 产品性能分析,目标是保证业务连续稳定。
这里主要涉及研发和运维部门,通过故障感知、异常定位、稳定性分析,进行产品性能的分析,保证业务连续稳定。
② 业务特征分析,目标是通过数据驱动业务增长。
保障了业务连续稳定之后,可以从运营的角度,对运营数据进行精确统计,及时调整运营策略,提升功能易用性和用户参与度,创造更多的收益。
用户体验分析目标和步骤
当然,我们的用户体验分析必须严格遵守《个人信息保护法》,保障用户隐私,不能采集敏感信息。
03. 嘉为鲸眼RUM真实用户监测中心
基于我们对用户体验分析和优化的理解,形成了嘉为鲸眼RUM真实用户监测中心产品,从用户体验入手,建立用户体验分析体系,成为全链路观测的前哨兵。
并且通过RUM与鲸眼体系子产品如监控中心、告警中心、日志中心、APM的联动,提供全栈可观测能力:
- 面向运维部门,提供异常故障感知能力,保证业务连续稳定;
- 面向研发部门,提供异常根因分析,定位性能瓶颈;
- 面向运营部门,提供业务指标衡量,辅助决策。
用户体验分析体系
嘉为蓝鲸RUM真实用户监测中心解决方案,面向企业IT研发、运维解决分布式架构下对于异常根因定位、定位性能瓶颈。通过低侵入的探针获取信息,将异常问题、性能瓶颈与真实用户的访问轨迹、终端信息进行关联分析,并支持还原到每笔链路追踪、每段异常代码级别的定位。助力企业快速定位根因,更好地维护用户体验。
- 运营能力助力多:基于真实的用户访问数据,构建多场景运营助力体系。
- 感知问题能力强:联动基础监控告警,实现指标统计、告警感知。
- 保证可用定位准:完整的排障、性能分析体系,准确实现代码级定位。
- 兼容采集范围广:支持市面上99%以上的浏览器。
- 简单接入侵入低:提供探针接入指引,低侵入接入,完全不会对用户原本的代码造成影响。
- 运维联动优化多:拥有蓝鲸标准运维平台能力,助力构建可持续观测、优化改进的反馈机制。
1)完整链路分析,精准定位故障根因
- 支持基于统计分析维度进行异常定位,确认影响范围、优先级有序排障。为用户体验保驾护航;
- 支持以明细数据进行检索分析,完成单次会话完整链路信息的构建,层层下钻,完成代码行级的精准异常定位;
- 支持在完整会话链路信息的基础上,使用业界统一trace_id联通后端APM联合分析(可拓展外部系统),实现前后端异常精准定位;
- 基于会话ID、视图ID精准查询异常日志明细(预脱敏处理)。
2)多角度构建立体化性能评估体系
- 以 W3C 标准为基础,建立完整前端性能评估体系,准确助力度量用户体验;
- 多种分析场景,支持业务维度、系统自身维度等多种优化场景;
- 支持基于 trace_id 联通后端 APM 联合分析可拓展外部系统,实现前后端性能瓶颈精准定位;
- 基于会话 ID、视图 ID 精准查询性能相关日志明细(预脱敏处理)。
3)真实用户访问数据,统计助力运营决策
- 基于用户操作真实数据,提供真实有效、及时响应的运营数据;
- 通过对有效的数据分析点击、访问、路径等,提供用于分析用户需求的通用指标数据;
- 遵循个人信息保护法,提供完整的脱敏处理方案,保证用户个人隐私。
4)基于用户终端分布,锁定分布范围
- 基于用户访问地理位置,确认用户分布情况,初步判断确认分布式节点运行情况;
- 基于用户访问的浏览器信息,确认网页与浏览器的适配性,保证用户体验;
- 基于用户访问的终端类型、终端型号,确认系统与用户终端的适配性问题。
04. 用户体验优化体系应用场景
场景一:网点系统出现问题,业务办理时间整体延迟
类似银行、营业厅、分店等场所,在客户办理业务过程中,不可避免会出现系统故障引起客户等待的问题。一般我们将20分钟定为多数客户能够忍受的时间底线,一旦超过20分钟,客户的满意度将大幅下降,可能引起客户投诉等情况,甚至带来品牌满意度的下降。
场景二:系统性能缓慢,用户对系统失望,减少访问
用户打开一个网站,如果3秒内没有响应,57%的用户会放弃浏览;网页加载速度缓慢、用户体验不佳,将带来不同程度的满意度下降、访问量下降、转化率下降,直接影响企业品牌形象和经济收入。
这两种场景我们都可以通过用户体验优化体系进行解决:
1)信息通路的建立
总部与网点之间、企业和用户之间,往往存在消息壁垒,无法及时获取信息。所以第一步需要打通信息通路,建立监控、告警渠道,使业务侧的故障能够及时同步。
异常和性能瓶颈等故障的定位
当业务出现故障后,处理人员会收到大量的信息,第二步需要将获取到的信息进行清洗和收敛,并精准定位到核心原因,快速解决问题。
业务流程的优化
通过数据的积累分析,不断进行迭代优化,使产品更好用,用户体验更好。